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Abstract. We consider an L2-norm least-squares principle for a scalar hyperbolic problem. A proper
variational framework for the associated finite element method is developed and studied. Analysis of
the discretization error based on the least-squares projection property shows a gap (see [8]) of one.
This number cannot be improved with a standard duality argument because the least-squares dual
does not possess full elliptic regularity. Using a perturbed dual problem we are able to show that the
actual gap of the least-squares method in the constant convection case is not worse than 2/3.
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1. Introduction

The error of a finite element approximation depends on two factors: the regularity of the exact solution and
the polynomial degree of the finite element space. An optimal error estimate can be stated symbolically as

‖error‖0 ≤ Chr‖exact solution‖r; (1.1)

where k is the polynomial degree of the finite element space and ‖ · ‖s denotes the usual Sobolev space
norm2. An optimal error estimate establishes the fact that a finite element approximation of a sufficiently
regular solution converges at the same asymptotic rate as the interpolant of this solution. Ability to generate
optimally convergent approximations in various Sobolev space norms is not an intrinsic property of the finite
element method. There are instances when even under ideal circumstances the approximation will converge
at a slower rate than the solution interpolant. In such cases the relevant error estimate becomes

‖error‖0 ≤ Chs‖exact solution‖r. (1.2)

where s < r. The notion of the gap as a measure of a method’s deficiency relative to the interpolation error
has been introduced in [8] by Johnson et. al.. Specifically, the gap equals the difference r − s between the
potential convergence rate afforded by the solution regularity and the actual rate of the method.

The first kind of error estimates, i.e., optimal errors with zero gap, typically arise in the context of
elliptic equations, while finite element methods for hyperbolic problems tend to produce approximations
with a positive gap; see [8]. A typical example of such a problem is the scalar convection equation (often
referred to as the reduced problem)

uβ + cu = f in Ω, (1.3)

u = g on Γ−, (1.4)

1This work was sponsored by the National Science Foundation under grant number DMS-0073698.
2Throughout the paper we adhere to standard Sobolev space notations such as (·, ·) and | · |k for the L2 inner product and

Hk(Ω) seminorm, respectively. Bold face symbols will denote vector valued functions.
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that will be in the focus of the present work. In (1.3)-(1.4) Ω is a bounded convex region in R2, β =
(β1(x), β2(x)) is a given convection vector, c(x) is a bounded measurable function on Ω, f ∈ L2(Ω) is the
source term, and uβ = β · ∇u is the derivative of u in the direction of β. As usual,

Γ− = {x ∈ Γ|n(x) · β(x) < 0} (1.5)

denotes the inflow portion of Γ = ∂Ω. It is well-known that the gap of the standard Galerkin method for
(1.3)-(1.4) is one, while the gap of SUPG, see [7], is 1/2. In section 2 we carry analysis of a least-squares
method for the model problem using standard arguments based on the projection property of the least-
squares principle. The gap revealed by this analysis equals one, i.e., the same as for the Galerkin method.
On the other hand, there is computational evidence that for smooth solutions the least-squares method will
perform at a level comparable with that of SUPG; see [1], [5] and [3]. Moreover, in [9] Lazarov et. al. have
shown that the gap of a least-squares method for the full convection-diffusion problem is the same as in
SUPG. This prompts the question whether the theoretical gap of the least-squares method for the reduced
problem (1.3)-(1.4) can’t be improved3. A standard way of doing this would be to pursue a duality argument
(Nitsche’s trick). However, in section 3 we show that the least-squares dual problem is in fact a coupled
system of two hyperbolic problems. As a result, this problem does not possess the elliptic regularity necessary
to carry out the usual duality argument. To circumvent this problem we proceed to define a regularized dual
problem obtained by adding a small amount of crosswind diffusion and a Neumann boundary condition.

For rectangular domains and constant advection in one of the coordinate directions this enables us to
improve the gap of the least-squares method to 2/3. While numerical evidnce strongly suggests that such
a result may actually be valid for more general domains and advection fields, at present we are not aware
whether or not the technique used in this paper can be extended to such cases.

We also point out that while the main result in this paper is established for rectangular domains, it remains
valid for any regular triangulation of this domain into finite elements. It is also clear that regardless of the
grids and elements employed, e.g., triangles, rectangles or isoparametric bricks, the least-squares scheme
developed here always leads to symmetric and positive algebraic systems for the unknown coefficients, which
is one of the valuable computational advantages of least-squares compared with other discretization schemes.

2. The least-squares method

In this paper we focus on an L2-norm least-squares method for the reduced problem (1.3)-(1.4) in which the
boundary condition is imposed on the trial space. In this form the method has been introduced by Jiang;
see [5]. Even though the method itself is not new, it still lacks a proper variational formulation which, as
we show below, differs from the setting used for the full problem; see e.g., [9]. Thus, we first proceed to
establish the proper mathematical framework for the least-squares principle4, that is, the relevant function
spaces and norms. For simplicity let c ≡ 1 and consider the space

V = {v ∈ L2(Ω) | vβ + v ∈ L2(Ω)}. (2.1)

V is Hilbert space when equipped with the graph norm

|||v|||G =
(
‖v‖20 + ‖vβ + v‖20

)1/2

. (2.2)

It is also known that functions in V have well-defined traces on L2(Γ−) and L2(Γ+), where Γ+ = Γ − Γ−;
see, e.g., [6], so that

V0 = {v ∈ V | v = 0 on Γ−}. (2.3)

is a well-defined subspace of V. Then, a proper least-squares principle for the model problem is to seek a
minimizer of the quadratic functional

J (u; f, g) =
1
2
‖uβ + u− f‖20 (2.4)

out of the space V0. It is implicitly assumed that inhomogeneous boundary data has been removed in the
usual manner by writing u = u0 +ug where u0 ∈ V0 is the unknown part of the solution that vanishes on Γ−
and ug = g on Γ− is a given function in V. This amounts to solving (1.3)-(1.4) with homogeneous boundary

3The gap of the Galerkin method is genuine in the sense that the suboptimal convergence rate is observed in actual
computations.

4For analysis of an alternative method with weakly imposed boundary condition we refer to [3].
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data and a modified source term. In a finite element implementation the role of ug is played by the boundary
interpolant of g. For simplicity we retain the symbols u and f to denote the redefined unknown and source
term, respectively.

The necessary minimum condition for (2.4) is to seek u ∈ V0 such that

BL(u; v) = FL(v) for all v ∈ V0. (2.5)

The bilinear form and right hand side functional in (2.5) are

BL(u; v) = (uβ + u, vβ + v),

FL(v) = (f, vβ + v).

Our next task is to show that the least-squares principle gives rise to a problem-dependent inner product and
norm that are equivalent to the graph norm and inner product on V0. As usual, we refer to these as the
energy inner product and norm.

Theorem 2.1. Assume that 1−∇ · β ≥ σ > 0. Then, the energy norm

|||v|||E = BL(v; v)1/2 ≡ ‖vβ + v‖0 (2.6)

is equivalent to the graph norm, that is, there exist positive constants C1 and C2 such that

C1|||v|||E ≤ |||v|||G ≤ C2|||v|||E for all v ∈ V0. (2.7)

Proof. The lower bound is a simple consequence of the energy norm definition (2.6). To prove the upper
bound it suffices to show that

C(‖uβ‖
2
0 + ‖u‖20) ≤ ‖uβ + u‖20 = ‖uβ‖

2
0 + ‖u‖20 + 2(u, uβ).

This easily follows from the Green’s formula,

2
∫

Ω

uβu dx = −
∫

Ω

u2∇ · β dΓ +
∫

Γ+

u2β · n dΓ,

the assumption that 1−∇ · β ≥ σ, and the fact that β · n ≥ 0 on Γ+.

Corollary 2.1. The weak least-squares problem has a unique solution u ∈ V0. Moreover,

|||u|||E ≤ ‖f‖0.

Proof. The norm equivalence (2.7) implies that BL(·; ·) is coercive and continuous on V0 × V0. It also
easy to see that FL(·) is a bounded linear functional V0 7→ RI . Thus, existence and uniqueness of a weak
solution follows by virtue of Riesz representation theorem. Stability of the solution follows from (2.5) with
v ≡ u and the Cauchy’s inequality.

To define a least-squares finite element method for the model problem we shall make use of the standard
Lagrangian finite element spaces

Pk = {uh ∈ C0(Ω) |uh|K ∈ Pk,∀K ∈ Th}, (2.8)

where Pk denotes the space of algebraic polynomials in x and y whose degree does not exceed k. It is
assumed that Pk are defined with respect to a uniformly regular partition Th of Ω into triangles K. Next,
we introduce a finite element subspace of V0

Vh = {uh ∈ Pk |uh = 0 on Γ−}. (2.9)

The discrete problem then is to seek uh ∈ Vh such that

BL(uh; vh) = FL(vh) for all vh ∈ Vh. (2.10)

Thanks to the inclusion Vh ⊂ V0 the lower bound in (2.7) remains valid when BL(·; ·) is restricted to Vh×Vh.
Consequently, (2.10) is a linear algebraic system with a symmetric and positive definite matrix and the weak
discrete problem will have a unique solution. As least-squares methods share similar variational foundations
with classical Rayleigh-Ritz principles, optimal error estimates in the energy norm can be obtained in a
completely standard manner.
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Table 1: Convergence rate for u = exp(x) sin(x) sin(y): P2 elements.

L2 error H1 error Streamline Energy
Galerkin 2.0005 1.0073 1.0008 2.0005
SUPG 3.0000 2.0024 1.9970 2.5098
LSFEM 3.0055 2.0087 2.0377 2.0026

Theorem 2.2. Assume that u ∈ V0 solves (1.3)-(1.4) and let uh ∈ Vh denote the least-squares approxi-
mate solution. Then

|||u− uh|||E = inf
vh∈Vh

|||u− vh|||E . (2.11)

If, in addition u ∈ Hk+1(Ω) ∩ V0, then

|||u− uh|||E ≤ Chk|u|k+1. (2.12)

Proof. A fundamental property of the least-squares method is that uh is the orthogonal projection of
the exact solution with respect to the problem-dependent energy inner product BL(·; ·). This immediately
implies the first assertion of the theorem. To prove the second statement consider the interpolant ũh ∈ Vh

of the exact solution. Then, (see e.g., [2])

‖u− ũh‖0 + h|u− ũh|1 ≤ Chk+1|u|k+1.

This, (2.11) and the triangle’s inequality establish (2.12).

From the proof of Theorem 2.1 we know that the least-squares energy norm controls the L2-norms of the
streamline derivative uβ and the solution. Thus, (2.12) translates into the optimal error bound

‖uβ − uh
β‖0 = O(hk),

and the suboptimal estimate
‖u− uh‖0 = O(hk).

Therefore, based on Theorem 2.2 we can only infer that the gap of the least-squares method equals one.
This gap equals the gap of the Galerkin method and is half order worse than the gap of the SUPG method
where; see [8],

‖u− uh
SUPG‖0 ≤ Chk+1/2|u|k+1.

At the same time, numerical studies in [1], [3] strongly suggest that the actual gap of the least-squares
method is less than one. Table 1 contains a typical example of the convergence rates that we have observed
and reported in [1]. The gap of the Galerkin method is clearly seen, while least-squares and SUPG errors
are essentially the same. Jiang; see [5], also notes that, as a rule, for smooth solutions the least-squares L2

error is almost always optimal.

3. Improved L2-norm error estimates

To improve the L2 error estimate we will use a duality argument. However, the seemingly natural choice of
the dual problem: seek v ∈ V0 such that

BL(u; v) = (ψ, u) for all u ∈ V0, (3.1)

is not appropriate for this purpose. To see this define

Γ++ = {x ∈ Γ|n(x) · β(x) > 0},

and let Γ0 = Γ − Γ− ∪ Γ++. Also, let η denote a vector field that is orthogonal to β. Then, the normal
direction on Γ0 coincides with η. After formal integration by parts in (3.1) we find that the strong dual
problem is

−∇ · (β(vβ + v)) + (vβ + v) = ψ in Ω (3.2)

v = 0 on Γ− (3.3)
vβ + v = 0 on Γ++. (3.4)
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Eqs. (3.2)-(3.4) are a degenerate elliptic problem. As such, the differential operator in (3.2) can only control
the second derivatives along the streamlines but not over the whole region. In fact, it is easy to see that
(3.2)-(3.4) can be written as a coupled system of two hyperbolic PDE’s (see [6] for a similar situation arising
in the context of SUPG)

−∇ · (βz) + z = ψ in Ω
z = 0 on Γ++,

β · ∇v + v = z in Ω
v = 0 on Γ−.

Then, using Rauch’s differentiability theorem [10] one can show that for a smooth ψ,

‖v‖k ≤ ‖ψ‖k.

This result is sharp and indeed means that the least-squares dual problem does not possess the necessary
elliptic regularity. To remedy this situation let us perturb (3.2)-(3.4) by adding the crosswind diffusion term
−εvηη and, provided Γ0 is not empty, the Neumann condition εvη = 0 on Γ0. After some manipulations
the regularized dual problem reads

−εvηη − vββ − vβ∇ · β + (1−∇ · β)v = ψ in Ω (3.5)

v = 0 on Γ− (3.6)
vβ + v = 0 on Γ++ (3.7)

vη = 0 on Γ0. (3.8)

We now turn to develop an improved L2-error estimate. To establish the elliptic regularity of (3.5)-(3.8)
we adopt the same setting as in [4, p.471]. Specifically, we consider β = (1, 0)T , Ω = (0, 1)× (0, 1) so that

β · ∇u = ux

and

Γ− = Γ1,

Γ++ = Γ3

Γ0 = Γ2 ∪ Γ4,

where Γ1, Γ3, Γ2 and Γ4 denote the left and right and the bottom and top walls of Ω. With these assumptions
our model problem specializes to

ux + u = f in Ω, (3.9)
u = g on Γ−, (3.10)

while the least-squares dual (3.2)-(3.4) takes the form

−vxx + v = ψ in Ω
v = 0 on Γ1

vx + v = 0 on Γ3.

Likewise, the regularized dual is

−εvyy − vxx + v = ψ in Ω (3.11)
v = 0 on Γ1 (3.12)
vy = 0 on Γ2 ∪ Γ4 (3.13)

vx + v = 0 on Γ3. (3.14)

Next, the full elliptic regularity of (3.11)-(3.14) will be established.

Lemma 3.1. Assume that v is a smooth function such that (3.12)-(3.14) hold. Then

|v|2 ≤ ‖4v‖0. (3.15)



6 P.B. Bochev & J. Choi

Proof. To prove the lemma we need to show that

‖4v‖20 − |v|22 = 2
∫

Ω

(vxxvyy − v2
xy) dx ≥ 0.

Integrating by parts twice and accounting for the fact that n2 = 0 on Γ1 ∪ Γ3 and n1 = 0 on Γ2 ∪ Γ4 yields
the identity ∫

Ω

vxxvyydx =
∫

Ω

v2
xydx+

∫
Γ2∪Γ4

vxxvyn2dΓ−
∫

Γ1∪Γ3

vxyvyn1dΓ.

The first boundary integral vanishes thanks to the Neumann boundary condition (3.13). The integral along
Γ1 is zero thanks to the Dirichlet condition (3.12) as vy is the tangential derivative of v(0, y) ≡ 0. Lastly,
the Robin condition (3.14) means that v = −vx along Γ3 and

−
∫

Γ3

vxyvy dΓ =
∫

Γ3

(−vx)yvy dΓ =
∫

Γ3

v2
y dΓ ≥ 0.

As a result, ∫
Ω

(vxxvyy − v2
xy) dx =

∫
Γ3

v2
y dΓ ≥ 0

which proves the lemma.

Theorem 3.1. Solution of the dual problem (3.11)-(3.14) satisfies the stability estimates
√
ε‖∇v‖0 ≤ ‖ψ‖0, (3.16)
‖4εv‖0 ≤ ‖ψ‖0, (3.17)

where 4εv = vxx + εvyy

Proof. Multiplying (3.11) by v, integrating by parts and noting that n2 = 0 on Γ1 ∪ Γ3 and n1 = 0 on
Γ2 ∪ Γ4 gives the identity

‖vx‖20 + ε‖vy‖20 + ‖v‖20 −
∫

Γ2∪Γ4

vvyn2 dΓ−
∫

Γ1∪Γ3

vvxn1 dΓ =
∫

Ω

vψdx.

The integral along Γ2 ∪ Γ4 vanishes thanks to the Neumann condition (3.13); the integral along Γ1 is zero
because of the Dirichlet condition (3.12) and the remaining integral along Γ3 gives a nonnegative contribution
thanks to the Robin condition vx = −v. As a result,

ε‖∇v‖0 ≤ ‖vx‖20 + ε‖vy‖20 + ‖v‖20 ≤ ‖ψ‖0‖v‖0

from where (3.16) easily follows.
To prove the second inequality, multiply (3.11) by −4εv and integrate over Ω to obtain

‖4εv‖20 +
∫

Ω

v(−vxx − εvyy) dx =
∫

Ω

(−4εv)ψ dx.

Consider the term
∫
Ω
v(−εvyy) dx. Integrating by parts, using the Neumann condition (3.13) and the fact

that n2 = 0 on Γ1 ∪ Γ3 gives ∫
Ω

v(−εvyy)dx = ε‖vy‖20 − ε

∫
Γ2∪Γ4

vvy dΓε‖vy‖20.

For the term
∫
Ω
v(−vxx) dx integration by parts and n1 = 0 on Γ2 ∪ Γ4 gives∫

Ω

v(−vxx)dx = ‖vx‖20 +
∫

Γ1

vvx dΓ−
∫

Γ3

vvx dΓ

= ‖vx‖20 +
∫

Γ3

v2 dΓ.

Again, the integral along Γ1 vanishes thanks to the Dirichlet condition (3.12), while the integral along Γ3

turns out to be nonnegative thanks to the Robin condition (3.14). The desired bound (3.17) now can be
easily obtained from the resulting identity

‖4εv‖20 + ‖vx‖20 + ε‖vy‖20 +
∫

Γ3

v2 dΓ =
∫

Ω

(−4εv)ψ dx.
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Corollary 3.1. For smooth solutions of (3.11)-(3.14)

|v|2 ≤
1
ε
‖4εv‖0. (3.18)

The next lemma is a version of the duality argument, (Nitsche’s trick), specialized to our needs.

Lemma 3.2. Assume that u ∈ Hk+1(Ω) solves (3.9)-(3.10), and that uh is the least-squares approxima-
tion. Then, there exists a constant C such that

‖u− uh‖0 ≤ Ch
1
3 |u− uh|1. (3.19)

Proof. Let e = u − uh ∈ V0 denote the least-squares approximation error and consider a solution v of
the regularized dual problem with ψ = e so that e = −4εv + v. Taking under consideration the boundary
conditions on v and e yields the identity

‖e‖20 = (e,−4εv + v)
= −ε(e, vyy) + (e,−(vx + v)x + (vx + v))

= ε(ey, vy) + (ex + e, vx + v)−
∫

Γ

evyn2 dΓ−
∫

Γ

e(vx + v)n1 dΓ

= ε(ey, vy) + BL(e; v).

The projection property of the least-squares weak problem means that BL(e; v) = BL(e; v − zh) for any
zh ∈ Vh. As a result,

‖e‖20 = ε(ey, vy) + BL(e; v − zh)
≤ ε‖ey‖0‖vy‖0 + |||e|||E |||v − zh|||E ∀zh ∈ Vh.

Since both v − zh and e vanish on a part of Γ with a positive measure, the Friedrichs-Poincare inequality
(see [2]) can be used to show that

|||e|||E ≤ |e|1 and |||v − zh||| ≤ |v − zh|1,

and therefore,
‖e‖20 ≤

√
ε|e|1

√
ε‖vy‖0 + |e|1|v − zh|1.

To estimate the second term in this inequality we set zh equal to the interpolant ṽh of v. The definition of
v combined with (3.18) yields

|v − ṽh|1 ≤ Ch|v|2 ≤ C
h

ε
‖4εv‖0 ≤ C

h

ε
‖e‖0.

Likewise, from (3.16) we see that
√
ε‖vy‖0 ≤

√
ε‖∇v‖0 ≤ ‖ψ‖0 = ‖e‖0.

Therefore,

‖e‖0 ≤ C(
√
ε+

h

ε
)|e|1.

The minimum of (
√
ε+

h

ε
) occurs when ε = (2h)

2
3 which establishes the final result.

Combining the Lemma 3.2 with the a priori error estimate in Theorem 2.2, gives the improved L2-norm
error estimate.

Theorem 3.2. Assume that the condition of the Lemma 3.2 holds. Then, there exists a constant C such
that

‖u− uh‖0 ≤ Chk+ 1
3 |u|k+1. (3.20)
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